

CS103CS103
Fall 2025Fall 2025

Lecture 14:
Finite Automata
Part 1 of 3

Midterm 1

● If your score isn’t in the range you’re used to, ask yourself what
happened, and be thoughtful and honest with yourself.

● Approach conversations with course staff genuinely. We approach
them from a place of non-judgment.

● If anything about the grading feels arbitrary, that might be a
symptom that you’re overlooking a key concept. Come talk with us
so we can help clarify!

Some Thoughts

21-24 25-28 29-32 33-36 37-40

● 80th Percentile:
 36 / 40 (90%)

● 60th Percentile:
 33 / 40 (82.5%)

● 40th Percentile:
 28 / 40 (70%)

● 20th Percentile:
 22 / 40 (55%)

34

56

34
2728

● This is only 12.5% of your grade.
● We want everyone to be wildly

successful!
● 1-on-1s (contact Kaia)
● Review feedback
● Assess (small scattered point

losses? one large loss?)

● Assuming comfort going forward:
● Contrapositive
● Negations (implication, quant.)
● Assume/Prove table
● Proofwriting Checklist

Other Thoughts and Observations

21-24 25-28 29-32 33-36 37-40

● 80th Percentile:
 36 / 40 (90%)

● 60th Percentile:
 33 / 40 (82.5%)

● 40th Percentile:
 28 / 40 (70%)

● 20th Percentile:
 22 / 40 (55%)

34

56

34
2728

Outline for Today
● Computability Theory

● What problems can we solve with a
computer?

● Formal Language Theory
● Stringy thingies.

● Finite Automata
● A very simple model of a computing device.

Computability Theory

What problems can we solve with a computer?

What kind of
computer?

Two Challenges
● Computers are dramatically better now than

they’ve ever been, and that trend continues.
● Writing proofs on formal definitions is hard,

and computers are way more complicated
than sets, graphs, or functions.

● Key Question: How can we prove what
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?

Enter Automata
● An automaton (plural: automata) is a

mathematical model of a computing device.
● It’s an abstraction of a real computer, the way

that graphs are abstractions of social networks,
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of computing

devices, yet
● simple enough that we can reason about them in a

small space.
● They’re also fascinating and useful in their own

rights. More on that later.

Toward a Model of Computation...

Why does this
computer
“feel” less
powerful…

…than this
one?

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Calculators vs. Desktops
● A calculator has a small amount of memory. A

desktop computer has a large amount of
memory.

● A calculator performs a fixed set of functions. A
desktop is reprogrammable and can run many
different programs.

● These two distinctions account for much of the
difference between “calculator-like” computers and
“desktop-esque” computers.

● In CS103, we’ll first explore “small-memory”
computers in detail, then discuss “large-memory”
computers in depth.

Let’s Focus on Computing with Finite
Memory

7 8 9 ÷

4 5 6 ×

1 2 3 –

0 . = +

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in brain.

Memory limited by beads.

Our Goal: A Unifying Abstraction

How do we model “memory” and
“an algorithm” when they can take

on so many forms?

7 8 9 ÷
4 5 6 ×
1 2 3 –
0 . = +

179

What’s in Common?
● These machines receive input

from an external source.
● That input is provided

sequentially, one discrete unit
at a time.

● Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read off an answer based
on the configuration of the
device.

Modeling Finite Computation
● We will model a finite-

memory computer as a
collection of states linked
by transitions.

● Each state corresponds to
one possible configuration of
the device’s memory. This is
super abstract!

● Each transition indicates
how memory changes in
response to inputs.

● Some state is designated as
the start state. The
computation begins in that
state.

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

Modeling Finite Computation
● This device processes

strings made of characters.
● Each character represents

some external input to the
device.

● The string represents the full
sequence of inputs to the
device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the
transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation
● Once we’ve finished entering

all the characters of our input,
we need to obtain the result of
the computation.

● In general, computers can
produce all sorts of things as
the result of a computation: a
number, a piece of text, etc.

● As a simplifying assumption,
we’ll assume that we just need
to get a single bit of output.
That is, our machines will just
say YES or NO.

● (This can be generalized –
come talk to us after class if
you’re curious how!)

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation
● Some of the states in our

computational device will
be marked as accepting
states. These are denoted
with a double ring.

● If the device ends in an
accepting state after
seeing all the input,
accepts the input (says
YES).

● If the device does not end
in an accepting state after
seeing all the input, it
rejects the input (says NO).

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

q₃q₃

Modeling Finite Computation
● Try it yourself!

Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Finite Automata
● This type of computational

device is called a finite
automaton (plural: finite
automata).

● Finite automata model
computers where (1)
memory is finite and (2)
the computation produces
as YES/NO answer.

● In other words, finite
automata model
predicates, and do so with
a fixed, finite amount of
memory.

Finite-memory
Computer

input
YES

NO

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Formalizing Things

Strings
● An alphabet is a finite, nonempty set of symbols

called characters.
● Typically, we use the symbol Σ to refer to an alphabet.

● A string over an alphabet Σ is a finite sequence of
characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over Σ:
a aabaaabbabaaabaaaabbb abbababba

● But wait! There are no quotes here!
● The empty string has no characters and is denoted

ε.

Languages
● A language over Σ is a set L consisting of

strings over Σ.
● Example: The language of palindromes over

Σ = {a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in
Σ is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ
when L ⊆ Σ*.

Mathematical Lookalikes
● We now have ∈, ε, Σ, and Σ*. Yikes!
● The symbol ∈ is the element-of relation.
● The symbol ε is the empty string.
● The symbol Σ denotes an alphabet.
● The expression Σ* means “all strings that can

be made from characters in Σ.”
● That lets us write things like

● We have ε ∈ Σ*, but ε ∉ Σ.
● Ever get confused? Just ask!

The Cast of Characters
● Languages are sets of strings.
● Strings are finite sequences of characters.
● Characters are individual symbols.
● Alphabets are sets of characters.

Languages

Strings

are sets of

Characters
are finite sequences of

Alphabets

are nonempty, finite sets of

Finite Automata and Languages
● Let A be an

automaton that
processes strings
drawn from an
alphabet Σ.

● The language of A,
denoted (ℒ A), is the
set of strings over Σ
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

● Let D be the automaton shown to the
right. It processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

● So (ℒ D) = { w ∈ {a, b}* | w ends in a }.

 ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ start
a, b

 q₁
a, b

q₀

q₀ start a, b

q₁
a, b

q₂

a, b

This means “take this
transition if you see

an a or a b.”

q₀ start
 a, bq₀

What are the languages
of these automata? Answer at

https://cs103.stanford.edu/pollev

(I) (II)

(III)

https://cs103.stanford.edu/pollev

The Story So Far
● A finite automaton is a collection of states joined by

transitions.
● Some state is designated as the start state.
● Some number of states are designated as accepting

states.
● The automaton processes a string by beginning in the

start state and following the indicated transitions.
● If the automaton ends in an accepting state, it accepts

the input.
● Otherwise, the automaton rejects the input.
● The language of an automaton is the set of strings it

accepts.

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start q1

 0

 0, 1

0, 1
0 0 0

The Need for Formalism
● In order to reason about the limits of

what finite automata can and cannot do,
we need to formally specify their behavior
in all cases.

● All of the following need to be defined or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs
● A DFA is a

● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton
that we will see in this course.

DFAs
● A DFA is defined relative to some

alphabet Σ.
● For each state in the DFA, there must be

exactly one transition defined for each
symbol in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.
● There are zero or more accepting states.

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start q1

 0

 0, 1

0, 1

Designing DFAs
● At each point in its execution, the DFA

can only remember what state it is in.
● DFA Design Tip: Build each state to

correspond to some piece of information
you need to remember.
● Each state acts as a “memento” of what

you're supposed to do next.
● Only finitely many different states means

only finitely many different things the
machine can remember.

Recognizing Languages with DFAs
L = { w ∈ {a, b}*| the number of b's in w is congruent

 to two modulo three }

q0
start q1 q2

b b

a a a

b

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Recognizing Languages with DFAs
L = { w ∈ {a, b}* | w contains aa as a substring }

q0
start q1 q2

a

a

b

b

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

Try designing a DFA for comments! Here’s some test cases to help
you check your work:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1
start q2

* q3

*

q4
/q0

/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Next Time
● Regular Languages

● An important class of languages.
● Nondeterministic Computation

● Why must computation be linear?
● NFAs

● Automata with Magic Superpowers.

